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Abstract 
 Using a new set of coarse grain potentials for 
polystyrene, we provide new insight into 
interdiffusion. This potential incorporates 2 beads 
to represent one monomer. This 2:1 CG model 
presents an immense improvement over previous 
studies since it captures the stereochemistry of the 
polystyrene. These CG models can be back-
mapped to the atomistic structure. With this 
successful model, we  provide new insights into 
impacts of interfacial roughness on diffusion. 
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Goals 
Ø  Develop methodology for coarse graining of polystyrene and back-

mapping the results to atomistic level 
Ø  Understand the mechanism of interdiffusion of polystyrene using 

this CG model 
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CG model of polystyrene - A bead 
represent the backbone and B bead 
represent the phenyl group5,6 

Radial distribution function from 
atomistic (solid lines) and CG model 
(dashed lines)7 

Mw = 50kDa, 139 chains in each block 
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Ø Bulk diffusion coefficient decreases 
with increasing Mw.  

Ø  Time taken for interface to become 
homogeneous at 500K was ~50ns. 

Ø At longer times (>200ns), interfacial 
profile does not remain smooth. 
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Ø  Neutron reflectometry experiments capture long time interdiffusion 
of polystyrene. At these time scales, the experiments capture 
overall diffusive motion. 1,2 

Ø  Computational studies using bead-spring models were employed to 
study similar systems. These studies found that the onset of 
diffusion is dominated by chain ends.3 

Ø  Here we probe the onset of diffusion using a coarse grain model 
that carries some of the chemical information of the polymer. 
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Conclusions 
Ø  Potential for 2:1 coarse grain model of polystyrene is developed that capture the stereochemistry, using a 

single all-atom atactic polystyrene melt simulation. 
Ø  An excellent match with the experimental result for the density dependence of Mw is obtained 

using our CG model. 
Ø  Thermal expansion coefficient and compressibility calculated using our model match well 

with the experimental data. 
Ø  Diffusion coefficient of atactic polystyrene decreases with increasing Mw. The scaling factor 

obtained from CG model increases with the Mw. 

Ø  Interdiffusion of polystyrene takes a different route for diffusion in rough and smooth interfaces. 
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Thermal expansion coefficient from 
CG model for Mw = 20 kDa and 
experiment8 for Mw = 34.5 kDa 

Density dependence of polystyrene 
on molecular weight. Experimental 
data is obtained from Ref 8. 

Ø  It takes approximately 5ns to reach τd at 500K. 
Ø At longer times (>200ns), interface profile does not remain smooth which was also observed in rough 

interface simulation.  
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